
Terraform IaC Lab Documentation

Palo Alto Networks

Sep 07, 2021

overview

1 Welcome 3

2 Objective 5

3 Learning Outcomes 7
3.1 Lab Introduction . 7
3.2 Requirements . 10
3.3 Setup . 10
3.4 Terraform Background . 22
3.5 Panorama Configuration . 25
3.6 Lab Deployment . 27
3.7 Validation Testing . 30
3.8 Summary . 36
3.9 Cleaning Up . 36
3.10 Further Reading . 37
3.11 Terraform and Commits . 38

i

ii

Terraform IaC Lab Documentation

Version: 1.0.0

overview 1

Terraform IaC Lab Documentation

2 overview

CHAPTER 1

Welcome

Welcome to the Terraform Infrastructure as Code Lab!

In this lab we will be deploying a multi-tiered web application to the cloud. To accomplish this we’ll first need to
define the infrastructure supporting our application as well as how we’re going to secure the application. Rather than
manually defining the infrastructure elements within the cloud provider portal, we’re going to define our infrastructure
in code using Terraform’s declarative language and stateful build capabilities.

A key element of our infrastructure design will be the Palo Alto Networks VM-Series firewall. Using the Terraform
provider for PAN-OS, we will define the configuration of the VM-Series firewall, but we’ll be using Panorama to
manage that configuration. The PAN-OS bootstrapping feature will be used to initialize the VM-Series firewall and
point it to Panorama. Once it registers with Panorama, it will receive its runtime configuration.

Lastly, we will ensure that the firewall is able to respond effectively to changes made to the application infrastructure.

3

Terraform IaC Lab Documentation

4 Chapter 1. Welcome

CHAPTER 2

Objective

The objective of this workshop is to deploy and secure a WordPress content management system in Google Cloud
Platform. This web application will be supported by an Apache web server and a MariaDB database server residing in
two separate subnets.

As part of our infrastructure deployment, a VM-Series virtual firewall will be inserted between the untrusted public
subnet, the web subnet, and the database subnet. Our goal is to define, deploy, and configure all cloud infrastructure
elements including the VM-series firewall using Terraform exclusively.

5

https://wordpress.org
https://httpd.apache.org
https://mariadb.org/

Terraform IaC Lab Documentation

6 Chapter 2. Objective

CHAPTER 3

Learning Outcomes

• Learn best practices for managing infrastructure as code environments

• Learn how to use Terraform to define and deploy cloud infrastructure

• Learn about bootstrapping best practices for VM-Series firewalls in the cloud

• Learn about best practices for automating the management of VM-series firewalls

3.1 Lab Introduction

3.1.1 Infrastructure as Code

This training lab provides hands-on exposure to Infrastructure as Code (IaC) concepts and practices. IaC simply stated
is the practice of defining, utilizing, and maintaining infrastructure definitions as one would application source code.

7

Terraform IaC Lab Documentation

Config Definitions Infrastructure deployments and their configurations can be defined in various languages. Ter-
raform provides an infrastructure definition language called HCL that is multi-cloud in that it supports many
different public and private cloud environments. Most IaC languages are declarative in nature. This means they
define the desired state of the infrastructure rather than the steps necessary to achieve that state.

Config Repository A version control system (VCS) is a key element in managing application source code. Since
infrastructure definitions are just another form of source code, a VCS is a key element of IaC environemts as
well. It supports revision control, code checkout/checkin, team collaboration, code review, and API hooks for
automated build tools.

Build Tools Build tools act on the infrastructure definitions to build and configure the infrastructure components.
Often, this build process is incorporated into a larger Continuous Delivery (CD) pipeline with automated tests
and gate factors that govern the build process.

Platform APIs In order to automate the deployment and configuration of infrastructure elements an API must be
accessible to the build tool being used. Cloud providers such as AWS, GCP, and Azure all have various APIs
supporting different infrastructure components and services. Third-party virtual appliances such as the VM-
Series virtual firewall also has an API that may be used for configuration purposes. However, the use of a
common infrastructure definition language and build tools all but eliminates the need to interact directly with
any of these APIs.

Deploy Infrastructure The build tool is responsible for processing the infrastructure definition and leveraging the
backend APIs and orchestrating the deployment the infrastructure components. Terraform accomplishes this
by first assessing the state of each infrastructure resource. If nothing is instantiated, Terraform will take the
necessary steps to deploy the resource and configure it based on the parameters that have been provided.

Test and Validate A set of tests may be performed to ensure that the deployed infrastructure aligns with the definitions
provided in the infrastructure code. Since Terraform maintains state files detailing the live environment, it is
easy to run a terraform plan command to identify and resolve and disparties.

3.1.2 Lab Topology

The following diagram details the infrastructure topology associated with the web application we will be deploying.
The VM-Series firewall will be used to inspect and protect “North-South” traffic between the untrust and web

8 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

zones as well as “East-West” traffic between the web and database zones.

Subnet Address Interface
Management 10.5.0.0/24 Management
Untrust 10.5.1.0/24 ethernet1/1
Web 10.5.2.0/24 ethernet1/2
Database 10.5.3.0/24 ethernet1/3

3.1.3 Lab Components

Qwiklabs This lab is launched using Qwiklabs, which is an online learning platform that deploys and provides access
to cloud-based lab environments. Qwiklabs will establish a set of temporary set of credentials in the cloud
provider in order to deploy and access the cloud infrastructure and services.

Google Cloud Platform (GCP) Google Cloud Platform, offered by Google, is a suite of cloud computing services
that runs on the same infrastructure that Google uses internally for its end-user products, such as Google Search
and YouTube.

Panorama Panorama is the centralized management and reporting platform for PAN-OS devices including firewall
appliances, VM-Series virtual firewalls, WildFire appliances, and log collectors. It serves as the configuration
“source of truth” for a PAN-OS infrastructure deployment and supports the same XML and REST APIs as other
PAN-OS devices.

Hashicorp Terraform Each cloud provider offers a mechanism that allow you to define a set of infrastructure element

3.1. Lab Introduction 9

Terraform IaC Lab Documentation

or services and orchestrate their instantiation. However, these tools and templates are specific to each cloud
provider. We will be using Terraform to perform this function as it provides a common set of capabilities and a
template formats acroos all cloud providers.

3.2 Requirements

The following are requirements of this training workshop:

• A laptop with Internet connectivity (SSH and HTTPS access is required).

• A standards-compliant web browser (Google Chrome is recommended).

• An SSH client (e.g., OpenSSH, PuTTY, SecureCRT, etc).

• An understanding of Linux operating system basics.

• Proficiency with a Linux text editor such as vim or nano.

• A basic understanding of cloud computing concepts.

3.3 Setup

In this activity you will:

• Launch the lab

• Log into the Google Cloud Platform console

• Launch a Cloud Shell instance

• Clone the lab software repository

This lab can be used in two different ways, through an organized class using Qwiklabs, or at your own pace using your
personal GCP account. The two ways differ only in the setup method - every thing after logging into the GCP console
is the same.

Warning: If you use your own personal GCP account, you are responsible for all incurred charges and deleting
the created resources after completing the lab.

Follow the instructions for the method you are using for this lab:

• Setup - Qwiklabs Class

• Setup - Personal Account

3.3.1 Setup - Qwiklabs Class

Warning: Before you start it is recommended that you launch a private instance of your web browser. This will
prevent the use of cached Google credentials when logging into the GCP console. This will help ensure you do not
incur any personal charges.

10 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

Fig. 1: Chrome Incognito mode

3.3. Setup 11

Terraform IaC Lab Documentation

Log into the Qwiklabs portal

Navigate to the Qwiklabs URL in your web browser.

https://paloaltonetworks.qwiklabs.com

Log in with your Qwiklabs credentials (sign up if you are new to Qwiklabs). You must use your corporate email
address for the username.

Launch the lab environment

Confirm that the course containing the phrase Terraform Infrastructure as Code is listed under In Progress on the
welcome screen. Click on the this course in order to add it to your My Learning inventory.

You will will be directed to a screen containing the available labs. Click on the Terraform Infrastructure as Code
Lab.

You will be presented with a lab evironment screen, you will need to click the Start Lab button. Qwiklabs will then
provision a set of account credentials for GCP.

The lab environment will take a few minutes to provision. Once it is completed, a set of GCP credentials will be added
to the lefthand panel.

12 Chapter 3. Learning Outcomes

https://paloaltonetworks.qwiklabs.com

Terraform IaC Lab Documentation

3.3. Setup 13

Terraform IaC Lab Documentation

14 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

Log into Google Cloud

Click on the Open Google Console to launch a new browser tab and log into GCP. Be sure to use the credentials
provided by Qwiklabs rather than your personal Google account. This will ensure that you are not charged for any
infrastructure that you deploy.

Once you’ve authenticated, accept the user agreements and account recovery defaults. You will then be presented with
the Google Cloud dashboard.

Warning: Continue on with the lab in the Launch the Cloud Shell section.

3.3.2 Setup - Personal Account

Create a GCP project

Log into the GCP console, and click Create Project to create a new project.

Give your project a unique name, and click Create.

Make sure your project is selected at the top of the console.

3.3. Setup 15

Terraform IaC Lab Documentation

16 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

3.3. Setup 17

Terraform IaC Lab Documentation

18 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

Enable Compute Engine API

Now, enable the Compute Engine API for this project. From the menu, select APIs & Services > Library.

Search for Compute Engine API, then click on it.

Finally, click Enable to enable the API. It will take a few minutes to fully activate.

Warning: Continue on with the lab in the Launch the Cloud Shell section.

3.3.3 Launch the Cloud Shell

In the upper right corner of the dashboard, click on the shell prompt icon labeled Activate Cloud Shell to launch a
Cloud Shell instance. This is an on-demand Linux shell that contains many of the tools that will be used in this lab.
The Cloud Shell instance is where you will be working throughout the lab.

3.3. Setup 19

Terraform IaC Lab Documentation

20 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

3.3. Setup 21

Terraform IaC Lab Documentation

3.3.4 Clone the lab software repository

Once you are presented with the Cloud Shell prompt you will need to clone the GitHub repository used in this lab.
This repository (or repo) contains the files needed to deploy the network and compute infrastructure we’ll be working
with.

$ git clone https://github.com/PaloAltoNetworks/terraform-iac-lab.git

3.4 Terraform Background

3.4.1 Terraform At a Glance

• Company: HashiCorp

• Integration First Available: January 2018

• Configuration: HCL (HashiCorp Configuration Language)

• PAN-OS Terraform Provider

• GitHub Repo

• Implementation Language: golang

3.4.2 Configuration Overview

Many Files, One Configuration

Terraform allows you to split your configuration into as many files as you wish. Any Terraform file in the current
working directory will be loaded and concatenated with the others when you tell Terraform to apply your desired
configuration.

State Management

Terraform saves details about a deployment it has done to a file referred to as a “state file”. While this state file can be
stored locally from the host on which a deployment has been executed, it is best practice to store the state file remotely
so that collaborators can manage infrastructure from a common state file. Terraform Enterprise and Terraform Cloud
both provide centralized state management, but it can also be done using cloud storage capabilities.

If changes are made to infrastructure that was deployed by Terraform, the state file may differ from what’s actually
deployed. This is actually not a big deal, as many of Terraform’s commands do a Read operation to check the actual
state against what’s saved in the state file. Any changes that are found are then saved to the state file automatically.

Example Terraform Configuration

Here’s an example of a Terraform configuration file. We will discuss the parts of this config below.

22 Chapter 3. Learning Outcomes

https://www.hashicorp.com/
https://www.terraform.io/docs/providers/panos/index.html
https://github.com/terraform-providers/terraform-provider-panos

Terraform IaC Lab Documentation

3.4.3 Terminology

Plan

A Terraform plan is the sum of all Terraform configuration files in a given directory. These files are generally written
in HCL.

Provider

A provider can loosely thought of to be a product (such as the Palo Alto Networks firewall) or a service (such as AWS,
Azure, or GCP). The provider understands the underlying API to the product or service, making individual parts of
those things available as resources.

Most providers require some kind of configuration in order to use. For the panos provider, this is the authentication
credentials of the firewall or Panorama that you want to configure.

Providers are configured in a provider configuration block (e.g. - provider "panos" {...}, and a plan can
make use of any number of providers, all working together.

Resource

A resource is an individual component that a provider supports create/read/update/delete operations for.

For the Palo Alto Networks firewall, this would be something like an ethernet interface, service object, or an interface
management profile.

Data Source

A data source is like a resource, but read-only.

For example, the panos provider has a data source that gives you access to the results of show system info.

Attribute

An attribute is a single parameter that exists in either a resource or a data source. Individual attributes are specific to
the resource itself, as to what type it is, if it’s required or optional, has a default value, or if changing it would require
the whole resource to be recreated or not.

Attributes can have a few different types:

• String: "foo", "bar"

• Number: 7, "42" (quoting numbers is fine in HCL)

• List: ["item1", "item2"]

• Boolean*: true, false

• Map: {"key": "value"} (some maps may have more complex values)

3.4. Terraform Background 23

https://www.terraform.io/docs/providers/panos/d/system_info.html

Terraform IaC Lab Documentation

Variables

Terraform plans can have variables to allow for more flexibility. These variables come in two flavors: user variables
and attribute variables. Whenever you want to use variables (or any other Terraform interpolation), you’ll be enclosing
it in curly braces with a leading dollar sign: "${...}"

User variables are variables that are defined in the Terraform plan file with the variable keyword. These can be
any of the types of values that attributes can be (default is string), and can also be configured to have default values.
When using a user variable in your plan files, they are referenced with var as a prefix: var.hostname. Terraform
looks for local variable values in the file terraform.tfvars.

Attribute variables are variables that reference other resources or data sources within the same plan. Specifying a
resource attribute using an attribute variable creates an implicit dependency, covered below.

Dependencies

There are two ways to tell Terraform that resource “A” needs to be created before resource “B”: the universal de-
pends_on resource parameter or an attribute variable. The first way, using depends_on, is performed by adding the
universal parameter “depends_on” within the dependent resource. The second way, using attribute variables, is per-
formed by referencing a resource or data source attribute as a variable: panos_management_profile.ssh.
name

Modules

Terraform can group resources together in reusable pieces called modules. Modules often have input variables to
allow for customization, and output variable so that the resources they create can be accessed. This lab uses modules
to group together elements for the base networking components, the firewall, and the created instances.

For example, the firewall configuration is located in deployment/modules/firewall. Calling this module
creates the firewall instance, the network interfaces, and various other resources.

It can be used in another Terraform plan like this:

This calls the firewall module, and passes in values for the variables it requires.

3.4.4 Common Commands

The Terraform binary has many different CLI arguments that it supports. We’ll discuss only a few of them here:

$ terraform init

terraform init initializes the current directory based off of the local plan files, downloading any missing
provider binaries or modules.

$ terraform plan

terraform plan refreshes provider/resource states and reports what changes need to take place.

$ terraform apply

terraform apply refreshes provider/resource states and makes any needed changes to the resources.

$ terraform destroy

terraform destroy refreshes provider/resource states and removes all resources that Terraform created.

24 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

3.5 Panorama Configuration

In this activity you will:

• Initialize the Terraform provider

• Create the terraform.tfvars file

• Learn about the provided modules

• Assemble configuration/main.tf

For this portion of the lab, you will be using the Palo Alto Networks PAN-OS Terraform provider.

First, change to the Terraform configuration directory.

$ cd ~/terraform-iac-lab/configuration

3.5.1 Why Panorama?

In this lab we will be leveraging a Panorama instance to configure the VM-Series firewall we’ll be deploying. There
are other options for configuring the VM-Series firewall such as using Terraform to configure the firewall directly or,
even simpler, bootstrapping the firewall with a full bootstrap.xml file. However, we can make our boostrap package
simpler and reusable across multiple VM-Series instances by leveraging Panorama.

In this scenario we can provide VM-Series instance with the address of its Panorama console, the Device Group and
Template Stack it will be a member of, and an authorization key to register the instance securely with Panorama. Once
it registers with Panorama, the VM-Series instance will be mapped into the appropriate Device Group and Template
Stack and the configurations contained therein will be pushed to the firewall.

The following is an example of an init-cfg.txt file used in the bootstrap process.

type=dhcp-client
ip-address=
default-gateway=
netmask=
ipv6-address=
ipv6-default-gateway=
hostname=Ca-FW-DC1
vm-auth-key=755036225328715
panorama-server=10.5.107.20
panorama-server-2=10.5.107.21
tplname=FINANCE_TG4
dgname=finance_dg
dns-primary=10.5.6.6
dns-secondary=10.5.6.7
op-command-modes=jumbo-frame, mgmt-interface-swap**
op-cmd-dpdk-pkt-io=***
dhcp-send-hostname=yes
dhcp-send-client-id=yes
dhcp-accept-server-hostname=yes
dhcp-accept-server-domain=yes

3.5.2 Provider Initialization

Your first task is to set up the communications between the provider and the provided Panorama instance. There’s
several ways this can be done. The IP address, username, and password (or API key) can be set as variables in

3.5. Panorama Configuration 25

https://www.terraform.io/docs/providers/panos/index.html

Terraform IaC Lab Documentation

Terraform, and can be typed in manually each time the Terraform plan is run, or specified on the command line using
the -var command line option to terraform plan and terraform apply. You can also reference a JSON
file in the provider configuration which can contain the configuration.

Another way you can accomplish this is by using environment variables. Use the following commands to add the
appropriate environment variables, substituting in the values provided by the instructor:

$ export PANOS_HOSTNAME="<YOUR PANORAMA MGMT IP GOES HERE>"
$ export PANOS_USERNAME="<YOUR STUDENT NAME>"
$ export PANOS_PASSWORD="Ignite2020!"

Note: Replace the text <YOUR PANORAMA MGMT IP GOES HERE> and <YOUR STUDENT NAME> with the
values provided to you by the instructor. If you’re doing this lab on your own, you’ll need your own Panorama instance.

Now, you should see the variables exported in your shell, which you can verify using the env | grep PANOS
command:

PANOS_HOSTNAME=your-panorama-address
PANOS_USERNAME=studentXX
PANOS_PASSWORD=Ignite2020!

With these values defined, we can now initialize the Terraform panos provider with the following command.

$ terraform init

The provider is now ready to communicate with our Panorama instance.

3.5.3 Create configuration/terraform.tfvars

Our Terraform plan in this directory will create a device group, template, and template stack on our shared Panorama.
So we don’t overwrite the configuration of other students in the class, create a file called terraform.tfvars and
define values for the device group, template name, and template stack name:

device_group = "studentXX-dg"
template = "studentXX-template"
stack = "studentXX-stack"

Replace the strings studentXX-dg, studentXX-template, and studentXX-stack with the values pro-
vided by the instructor.

3.5.4 Learn about the provided modules

You have been provided with two Terraform modules in the configuration/modules directory that will build
out our Panorama configuration. Here’s a snippet of the contents of main.tf in the configuration/modules/
network directory:

Terraform will use this configuration to build out the contents of the template and template stack specified by the
template and stack variables.

The network module also specifies some outputs that can be fed to other modules in the configuration:

The module to populate the device group works in a similar fashion.

26 Chapter 3. Learning Outcomes

https://github.com/PaloAltoNetworks/terraform-iac-lab/blob/master/configuration/modules/networking/main.tf
https://github.com/PaloAltoNetworks/terraform-iac-lab/blob/master/configuration/modules/networking/outputs.tf
https://github.com/PaloAltoNetworks/terraform-iac-lab/blob/master/configuration/modules/policies/main.tf

Terraform IaC Lab Documentation

3.5.5 Assemble configuration/main.tf

Add the following to configuration/main.tf to build out the template and template stack on our Panorama
instance:

Now run terraform init (you need to run init each time you add a new module) and terraform plan. You
will see the Terraform provider determine what changes need to be made, and output all the changes that will be made
to the configuration. If you run terraform apply, those changes will be added to the candidate configuration, but
not committed (why?).

Add the next section to configuration/main.tf to build out the device group:

This module has variables for the names of zones and interfaces to avoid hard coding values. Our networking module
outputs those names from what it creates, so we can chain these two modules together.

You can run terraform init, terraform plan, and terraform apply to populate the device group on
Panorama.

Since Terraform is unable to commit configuration to PAN-OS on it’s own, we have provided a Golang helper program
to commit your user’s changes to Panorama. You use a null resource provisioner in your main.tf to have Terraform run
the program for you.

Add the following section to configuration/main.tf to issue the commit:

Your completed configuration/main.tf should look like this:

Now, run terraform init and terraform apply to finalize the changes. Log in to the Panorama web UI and
verify that your changes have been committed. You’re now ready to deploy the environment and have your firewall
bootstrap from this configuration.

3.6 Lab Deployment

In this activity you will:

• Create a service account credential file

• Create an SSH key-pair

• Create the terraform.tfvars file

• Add the bootstrap module

• Add the firewall module

• Deploy the infrastructure

3.6.1 Introduction

The lab infrastructure will also be deployed in GCP using Terraform. A Terraform plan has been provided that will
initialize the GCP provider, and call most of the modules responsible for creating the network, compute, and storage
resources needed. You will add the modules for creating the bootstrap configuration as well as the VM-Series firewall.

First, change to the Terraform deployment directory:

$ cd ~/terraform-iac-lab/deployment

3.6. Lab Deployment 27

Terraform IaC Lab Documentation

3.6.2 Create a service account credential file

Terraform will need to authenticate to GCP to perform the deployment. We could authenticate to GCP using the
username presented in the Qwiklabs panel when the lab was started. However, the Compute Engine default service
account is typically used because it is certain to have all the neccesary permissions.

List the email address of the Compute Engine default service account.

$ gcloud iam service-accounts list

Use the following gcloud command to download the credentials for the Compute Engine default service account
using its associated email address (displayed in the output of the previous command).

$ gcloud iam service-accounts keys create ~/gcp_compute_key.json --iam-account <EMAIL_
→˓ADDRESS>

Verify the JSON credentials file was successfully created.

$ cat ~/gcp_compute_key.json

3.6.3 Create an SSH key-pair

All Compute Engine instances are required to have an SSH key-pair defined when the instance is created. This is done
to ensure secure access to the instance will be available once it is created.

Create an SSH key-pair with an empty passphrase and save them in the ~/.ssh directory.

$ ssh-keygen -t rsa -b 1024 -N '' -f ~/.ssh/lab_ssh_key

Note: GCP has the ability to manage all of its own SSH keys and propagate them automatically to projects and
instances. However, the VM-Series is only able to make use of a single SSH key. Rather than leverage GCP’s SSH
key management process, we’ve created our own SSH key and configured Compute Engine to use our key exclusively.

3.6.4 Create deployment/terraform.tfvars

In this directory you will find the three main files associated with a Terraform plan: main.tf, variables.tf, and
outputs.tf. View the contents of these files to see what they contain and how they’re structured.

$ more main.tf
$ more variables.tf
$ more outputs.tf

The file main.tf defines the providers that will be used and the resources that will be created (more on that shortly).
Since it is poor practice to hard code values into the plan, the file variables.tfwill be used to declare the variables
that will be used in the plan (but not necessarily their values). The outputs.tf file will define the values to display
that result from applying the plan.

Create a file called terraform.tfvars in the current directory that contains the following variables and their
values. You will need to add a number of things:

GCP configuration:

project: The GCP project ID to use.

28 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

region: The GCP region we are using.

zone: The GCP zone we are using.

Authentication information

credentials_file: Path to the JSON credentials file.

public_key_file: Path to the SSH public key file.

Firewall information:

fw_name: The name for the firewall.

Panorama bootstrap information:

panorama: The hostname/IP address of Panorama.

tplname: The template stack created in the previous section (replace XX with your student number).

dgname: The device group created in the previous section (replace XX with your student number).

vm_auth_key: The VM auth key for Panorama.

Your file should look similar to the following, with the appropriate values replaced:

Note: If you’re running this lab on your own, replace these values appropriately. See the Panorama documentation
for generating the VM auth key.

3.6.5 Add the bootstrap module

Add the following module definition to deployment/main.tf:

This uses a module that has been published to the Terraform module registry for public use. (If you’d like to review the
code, it’s on the PaloAltoNetworks GitHub page.) This will create the Google Storage bucket for holding a PAN-OS
bootstrap configuration, as well as the required files.

3.6.6 Add the firewall module

Now we need to add another module definition to deployment/main.tf to specify the firewall configuration:

This module creates the VM-Series instance. Notice how the outputs from the bootstrap and vpc modules are used as
inputs to this one.

3.6.7 Deploy the infrastructure

Your completed deployment/main.tf file should look like this:

Now, you’re ready to deploy the infrastructure. Run the following commands:

$ terraform init
$ terraform plan
$ terraform apply

As we saw before, terraform init will install all required providers and modules, terraform plan will
show all the infrastructure that will be created, and terraform apply will create the infrastructure.

At a high level, the completed Terraform configuration will:

3.6. Lab Deployment 29

https://github.com/PaloAltoNetworks/terraform-google-panos-bootstrap
https://docs.paloaltonetworks.com/vm-series/10-0/vm-series-deployment/bootstrap-the-vm-series-firewall.html
https://github.com/PaloAltoNetworks/terraform-iac-lab/blob/master/deployment/modules/firewall/main.tf

Terraform IaC Lab Documentation

1. Run the bootstrap module

1. Create a GCP storage bucket for the firewall bootstrap package

2. Apply a policy to the bucket allowing read access to allUsers

3. Create the /config/init-cfg.txt, /config/bootstrap.xml, /software, /
content, and /license objects in the bootstrap bucket

2. Run the vpc module

1. Create the VPC

2. Create the Internet gateway

3. Create the management, untrust, web, and database subnets

4. Create the security groups for each subnet

5. Create the default route for the web and database subnets

3. Run the firewall module

1. Create the VM-Series firewall instance

2. Create the VM-Series firewall interfaces

3. Create the public IPs for the management and untrust interfaces

4. Run the web module

1. Create the web server instance

2. Create the web server interface

5. Run the database module

1. Create the database server instance

2. Create the database server interface

The deployment process should finish in a few minutes and you will be presented with the public IP addresses of the
VM-Series firewall management and untrust interfaces. However, the VM-Series firewall can take up to ten minutes
to complete the initial bootstrap process.

Once the firewall has completed the bootstrap process, it should be listed in Panorama as a managed device in your
device group under Panorama > Managed Devices > Summary.

3.7 Validation Testing

In this activity you will:

• Access the Apache web server

• Access the WordPress application

• Post a blog article

• Verify firewall rule matches

The previous two activities had you deploy and configure the infrastructure supporting our WordPress application.
Now it’s time to see if everything works as planned. If so, you should be able to access the application, post a blog
article, and verify that the appropriate firewall rules are being hit. If not, you will need to troubleshoot your configs
and make the necessary corrections.

30 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

3.7.1 Access the Apache web server

The web server is using the firewall’s untrust interface address in a destination NAT rule. Run the following commands
to determine the IP address of this interface.

$ cd ~/terraform-iac-lab/deployment
$ terraform output

Open a new tab in your web browser and go to http://<web-server-ip-address>. You should see the
Apache default home page.

3.7.2 Access the WordPress application

Append /wordpress to the end of the web server URL and the WordPress installation page should be displayed.

Fill in values of your choosing for the Site Name, Username, and Your Email. These are only for testing and do not
need to be real values.

Note: Make sure you copy the password that is provided to your clipboard. Otherwise you may not be able to log in
once WordPress is installed.

Click Install WordPress when you are done.

On the following page, click on Log In to log into the WordPress administrator dashboard.

Log into WordPress using the username and password you created.

You will then be presented with the WordPress administrator dashboard.

3.7. Validation Testing 31

Terraform IaC Lab Documentation

32 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

3.7. Validation Testing 33

Terraform IaC Lab Documentation

3.7.3 Post a blog article

Now that you’ve successfully logged into the WordPress administrator dashboard, let’s post an update to the blog.

Click on Write your first blog post under the Next Steps section. You will be presented with the Add New Post
editor.

Enter a title for your post and some sample content. Then click on Publish to post the update.

You can then click on Preview to see the published blog update.

3.7.4 Verify firewall rule matches

Now that we’ve confirmed the WordPress application is working properly, let’s see what is happening with our firewall
rules.

Log into the firewall administrator web interface at https://<firewall-management-ip> using these cre-
dentials:

• Username: admin

• Password: Ignite2020!

Navigate to Policies > Security, and scroll to the right. You will see details on the security rules that are being hit.

Scroll back to the left, find the security rule entitled Allow web inbound. Then click on the drop-down menu icon to
the right of the rule name and select Log Viewer.

You will see all of the logs associated with inbound web traffic. Notice the applications identified are web-browsing
and blog-posting.

34 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

3.7. Validation Testing 35

Terraform IaC Lab Documentation

Note: You may find source IPs other than your own as the web server is open to the public and will likely be
discovered by web crawlers and other discovery tools aimed at public cloud providers.

Navigate back to Policies > Security and click on the Log Viewer for the Allow web to db rule.

You will see all of the MySQL (actually MariaDB) database traffic between the WordPress web server and the database
backend.

3.8 Summary

Congratulations! You have completed the hands-on Infrastructure as Code lab.

3.8.1 What We’ve Accomplished

We’ve completed the following activities:

• Configure: We used Terraform to prepare Panorama for bootstrapping by configuring a device group, template,
and template stack.

• Deployment: We built out our application in GCP using Terraform, and used the bootstrap capability of VM-
Series to automatically retrieve the desired configuration from Panorama.

3.9 Cleaning Up

In this activity you will:

36 Chapter 3. Learning Outcomes

Terraform IaC Lab Documentation

• Destroy the lab deployment

3.9.1 Destroy the lab deployment

When deploying infrastructure in the public cloud it is important to tear it down when you are done, otherwise you
will end up paying for services that are no longer needed. We’ll need to go back to the deployment directory and use
Terraform to destroy the infrastructure we deployed at the start of the lab.

Change into the deployment directory, and tell Terraform to destroy all of the resources it has created by running
terraform destroy.

$ cd ~/terraform-iac-lab/deployment
$ terraform destroy

Warning: If you are doing the lab on your own, this is a critical step to stop being charged by GCP.

Qwiklabs will take care of destroying everything when the lab expires, but destroying cloud resources when they
are no longer needed is a good habit to get in to.

3.10 Further Reading

3.10.1 Terraform

• Terraform Documentation

• Terraform panos Provider

3.10. Further Reading 37

https://www.terraform.io/docs/index.html
https://www.terraform.io/docs/providers/panos/index.html

Terraform IaC Lab Documentation

• Terraform: Up & Running

3.11 Terraform and Commits

One thing to know when working with Terraform is that it does not have support for committing your configuration.
To commit your configuration, you can use the following Golang code.

package main

import (
"encoding/json"
"flag"
"log"
"os"

"github.com/PaloAltoNetworks/pango"
)

type Credentials struct {
Hostname string `json:"hostname"`
Username string `json:"username"`
Password string `json:"password"`
ApiKey string `json:"api_key"`
Protocol string `json:"protocol"`
Port uint `json:"port"`
Timeout int `json:"timeout"`

}

func getCredentials(configFile, hostname, username, password, apiKey string)
→˓(Credentials) {

var (
config Credentials
val string
ok bool

)

// Auth from the config file.
if configFile != "" {

fd, err := os.Open(configFile)
if err != nil {

log.Fatalf("ERROR: %s", err)
}
defer fd.Close()

dec := json.NewDecoder(fd)
err = dec.Decode(&config)
if err != nil {

log.Fatalf("ERROR: %s", err)
}

}

// Auth from env variables.
if val, ok = os.LookupEnv("PANOS_HOSTNAME"); ok {

config.Hostname = val
}
if val, ok = os.LookupEnv("PANOS_USERNAME"); ok {

(continues on next page)

38 Chapter 3. Learning Outcomes

https://www.terraformupandrunning.com
https://golang.org/

Terraform IaC Lab Documentation

(continued from previous page)

config.Username = val
}
if val, ok = os.LookupEnv("PANOS_PASSWORD"); ok {

config.Password = val
}
if val, ok = os.LookupEnv("PANOS_API_KEY"); ok {

config.ApiKey = val
}

// Auth from CLI args.
if hostname != "" {

config.Hostname = hostname
}
if username != "" {

config.Username = username
}
if password != "" {

config.Password = password
}
if apiKey != "" {

config.ApiKey = apiKey
}

if config.Hostname == "" {
log.Fatalf("ERROR: No hostname specified")

} else if config.Username == "" && config.ApiKey == "" {
log.Fatalf("ERROR: No username specified")

} else if config.Password == "" && config.ApiKey == "" {
log.Fatalf("ERROR: No password specified")

}

return config
}

func main() {
var (

err error
configFile, hostname, username, password, apiKey string
job uint

)

log.SetFlags(log.Ldate | log.Ltime | log.Lmicroseconds)

flag.StringVar(&configFile, "config", "", "JSON config file with panos connection
→˓info")

flag.StringVar(&hostname, "host", "", "PAN-OS hostname")
flag.StringVar(&username, "user", "", "PAN-OS username")
flag.StringVar(&password, "pass", "", "PAN-OS password")
flag.StringVar(&apiKey, "key", "", "PAN-OS API key")
flag.Parse()

config := getCredentials(configFile, hostname, username, password, apiKey)

fw := &pango.Firewall{Client: pango.Client{
Hostname: config.Hostname,
Username: config.Username,
Password: config.Password,

(continues on next page)

3.11. Terraform and Commits 39

Terraform IaC Lab Documentation

(continued from previous page)

ApiKey: config.ApiKey,
Protocol: config.Protocol,
Port: config.Port,
Timeout: config.Timeout,
Logging: pango.LogOp | pango.LogAction,

}}
if err = fw.Initialize(); err != nil {

log.Fatalf("Failed: %s", err)
}

job, err = fw.Commit(flag.Arg(0), true, true, false, true)
if err != nil {

log.Fatalf("Error in commit: %s", err)
} else if job == 0 {

log.Printf("No commit needed")
} else {

log.Printf("Committed config successfully")
}

}

This code reads the hostname, username, and password from the environment variables we set earlier.

You will need to do the following to compile and run this code:

1. Open a text editor, add the code above to it and save the file as commit.go.

2. Install the Go libraries for PAN-OS.

$ go get github.com/PaloAltoNetworks/pango

3. Compile the source code.

$ go build commit.go

4. Run the executable (using your existing environment variables).

$./commit <optional commit comment>

40 Chapter 3. Learning Outcomes

	Welcome
	Objective
	Learning Outcomes
	Lab Introduction
	Requirements
	Setup
	Terraform Background
	Panorama Configuration
	Lab Deployment
	Validation Testing
	Summary
	Cleaning Up
	Further Reading
	Terraform and Commits

